Bimanual coordination and corpus callosum microstructure in young adults with traumatic brain injury: a diffusion tensor imaging study.

نویسندگان

  • Karen Caeyenberghs
  • Alexander Leemans
  • James Coxon
  • Inge Leunissen
  • David Drijkoningen
  • Monique Geurts
  • Jolien Gooijers
  • Karla Michiels
  • Stefan Sunaert
  • Stephan P Swinnen
چکیده

Bimanual actions are ubiquitous in daily life. Many coordinated movements of the upper extremities rely on precise timing, which requires efficient interhemispheric communication via the corpus callosum (CC). As the CC in particular is known to be vulnerable to traumatic brain injury (TBI), furthering our understanding of its structure-function association is highly valuable for TBI diagnostics and prognosis. In this study, 21 young adults with TBI and 17 controls performed object manipulation tasks (insertion of pegs with both hands and bilateral daily life activities) and cognitive control tasks (i.e., switching maneuvers during spatially and temporally coupled bimanual circular motions). The structural organization of 7 specific subregions of the CC (prefrontal, premotor/supplementary motor, primary motor, primary sensory, parietal, temporal, and occipital) was subsequently investigated in these subjects with diffusion tensor imaging (DTI). Findings revealed that bimanual coordination was impaired in TBI patients as shown by elevated movement time values during daily life activities, a decreased number of peg insertions, and slower response times during the switching task. Furthermore, the DTI analysis demonstrated a significantly decreased fractional anisotropy and increased radial diffusivity in prefrontal, primary sensory, and parietal regions in TBI patients versus controls. Finally, multiple regression analyses showed evidence of the high specificity of callosal subregions accounting for the variance associated with performance of the different bimanual coordination tasks. Whereas disruption in commissural pathways between occipital areas played a role in performance on the clinical tests of bimanual coordination, deficits in the switching task were related to disrupted interhemispheric communication in prefrontal, sensory, and parietal regions. This study provides evidence that structural alterations of several subregional callosal fibers in adults with TBI are associated with differential behavioral manifestations of bimanual motor functioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion tensor imaging metrics of the corpus callosum in relation to bimanual coordination: effect of task complexity and sensory feedback.

When manipulating objects with both hands, the corpus callosum (CC) is of paramount importance for interhemispheric information exchange. Hence, CC damage results in impaired bimanual performance. Here, healthy young adults performed a complex bimanual dial rotation task with or without augmented visual feedback and according to five interhand frequency ratios (1:1, 1:3, 2:3, 3:1, 3:2). The rel...

متن کامل

Fiber Tractography and Diffusion Tensor Imaging in Children with Agenesis and Dysgenesis of Corpus Callosum: A Clinico-Radiological Correlation

Background Corpus callosum is the largest commissure in human brain. It consists of tightly packed white matter tracts connecting the two cerebral hemispheres.  In this study we aimed to evaluate role of fiber tractography (FT), and diffusion tensor imaging (DTI) in ped...

متن کامل

Differential Callosal Contributions to Bimanual Control in Young and Older Adults

Our recent work has shown that older adults are disproportionately impaired at bimanual tasks when the two hands are moving out of phase with each other [Bangert, A. S., Reuter-Lorenz, P. A., Walsh, C. M., Schachter, A. B., & Seidler, R. D. Bimanual coordination and aging: Neurobehavioral implications. Neuropsychologia, 48, 1165-1170, 2010]. Interhemispheric interactions play a key role during ...

متن کامل

Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury.

Diffusion tensor imaging (DTI) is a recent imaging technique that assesses the microstructure of the cerebral white matter (WM) based on anisotropic diffusion (i.e., water molecules move faster in parallel to nerve fibers than perpendicular to them). Fractional anisotropy (FA), which ranges from 0 to 1.0, increases with myelination of WM tracts and is sensitive to diffuse axonal injury (DAI) in...

متن کامل

Bimanual Coordination and Corpus Callosum Microstructure in Young Adults with Traumatic Brain Injury

Background and objectives: Hand function is frequently affected after moderate/severe traumatic brain injury (TBI) and is treated in rehabilitation settings [1]. Bimanual actions are ubiquitous in daily life. Many coordinated movements of the upper extremities rely on precise timing of movements and interhemispheric communication via the corpus callosum (CC) [2], which is especially vulnerable ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurotrauma

دوره 28 6  شماره 

صفحات  -

تاریخ انتشار 2011